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Ke consider the system of differential equations 

$ = [C + cB (et, c)] I 

where C is a constant matrix, 

EB (r, x) = EBI (7) + r2Bz (7) + . . . 

almost everywhere, 
Bj (4 (3 UW, Bj (7 + 27~) = Bj (7) 

27z 

s II Bj (T) II dT< Bj 
0 

and series 6f11 + c’s, + . . . converges for 1641 < co. 

(0.1) 

Systems of a similar form, as well as systems with almost periodic 
coefficients, have been treated in papers by Chetaev [ 1 I, Shtokalo [ 2 I, 
Erugin [ 2 I , Malkin I4 1 , Shimanov [ 5 1 , Cesari [ 6 1, Hale [ 7 I, Gambill 

19 1, and others. These authors obtained various results. 

In this paper we investigate canonical systems of form (0.1); this 
case has several specific singularities. In this connection, we will be 
particularly interested in the so-called case of aresonance’ which occurs 
when the eigenvalues of ma,trix C are congruent (mod i@). A whole class 
of problems of the theory of the dynamic stability of elastic systems 
[9 1 is reducible to systems of this type. 

As an example, in Section 4 we consider the problem of constructing 
the region of dynamic instability of “combined” resonance for one eoua- 
tion occurring in the applications. 

A major part of the paper, however, is valid for general systems (0.11, 

17 



18 V.A. Iakubovich 

not necessarily canonical systems; the approximate integration of system 
(0.1) is given by formulas (3.17); these formulas have apparently not 

been noticed previously. They are also valid in the general case. 

In the case of the asymptotic stability of general systems the method 

of Liapunov functions gives an estimate of the value of the small para- 

meter for which there is stability (for example, see [ 4b I, pp. 348-355). 

In the case of canonical systems, asymptotic stability is impossible and 

the method of Liapunov functions is inapplicable. The problem of estimat- 

ing the values of the small parameter which give stability (or instabil- 

ity) for canonical systems seems to be considerably more difficult. It 

was solved by altogether different methods in papers [lo-14b 1 (see also 

the survey [13a ] ). We shall not concern ourselves with this problem 

here. 

To treat canonical systems it is necessary to overcome the following 

difficulty. The characteristic exponents of (0.1) in the case of stabil- 

ity must be pure imaginary. Expanding them in powers of c l/P , we calculate 

the coefficients of this expansion. In the final stage of the computation 

we obtain pure imaginary values as approximate values of the character- 

istic exponents. It can be proved that the terms which follow and are not 

calculated could displace these values either to the righ+ or to the left 

half-plane, and that consequently it is impossible to make any inferences 

concerning the stability of the system at the end of the calculations. 

Theorem 3.1 indicates the cases in which this difficulty can be over- 

come. 

There is in general no theoretical difficulty in obtaining the approx-i- 

mations indicated above. However, as often happens in the applications, 

there is a great difference between the theoretical and practical possi- 

bilities of carrying out the calculations. 

Formula (3.17) makes it possible to “integrate” (this term is ex- 

plained below) system (0.1) without great difficulty up to and including 

quantities of the order of c2 (see the example in Section 4). This 

approximation is often completely satisfactory in practice. 

Subsequently we will use the following notation and terminology. The 

form 

<x, Y> = + (J x, Y), I=(-:, k) 
defines a nondegenerate indefinite scalar product of zero signature in 

the (a - 2 k )-dimensional complex space. (Ik is the identity matrix of 

order k.) 
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Let W be a matrix (in general, complex). Then 

<W Z, y> = (2, W+y>, where W+ = J-l WJ 

The matrix W is said to be J-hermitean if W+= W; J-skenhermitean, if 
W+= - V; and J-unitary, if W’+W = In. 

Every J-hermitean matrix W is of the form W = JH, where H* = - H; 
every J-skewhermitean matrix is of the form W = JH, where H = H*; the 
condition that W be J-unitary may be rewritten in the form W*JW = J; the 
J-unitary matrices form a group. 

In the case of canonical systems the matrix of the coefficients C + 
E B ( 8 t, c) is a real J-skewhermitean matrix (the parameters t and U are 
real). Complex J-skewhermitean matrices might also be considered. 

The matrix of the fundamental system of solutions X(t), X(O) = I,,, is 

J-unitary [ 15 I l in the case of canonical systems (the parameters 6 and 6 
are f ixedl . 

According to the Liapunov-Poincari theorem, the characteristic equation 

det[X($)-pl]=C (0.2) 

of ssstem (0.11 is recurrent. Its roots ~~(8. 6 1 are functions of 8 and t. 

1. Auxiliary information regarding functions of matrices. 
Let C be the union of a finite nunber of connected and simply connected 
regions in the complex plane snd suppose that f(z) is single-valued and 
analytic in the interior of G. 

Oppose that A is a matrix whose spectrum is in C. lhe matrix f(A) can 
be defined as 

f(A) = 2 i (CL---)-lf(~)~~ 
h r,,7 

(1.1) 

where the l-‘h are non-intersecting circrnnferences (or other closed curves) 
contained entirely in G and with the property that each point of the 

l We give a simple proof of this. If JH(t) is the matrix of the coeffi- 
cients of the canonical system, we have 

Hence dX / dt- JH (t) X 

-& (X’ JX) ~0, (X’ JX), = (X’ JX), = J, HJIH X+X = I 
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spectrun of A is contained in the interior of precisely one circumference 

rh’ 

This definition implies that f(SlAS) = Slf(A)S and if A is decom- 

posed into blocks A= A, + $, then f(A) = f($L' + f(A,). Hence the cal- 

culation of f(A) is reduced to the case when A is a Jordan block. In that 

case, the expression obtained from (1.1) coincides with the usual express- 

ion ( [ 15 I, p. 1321. 

Therefore, the definition of f(A) by the Cauchy formula (1.1) is 

identical with the other possible definitions, those of Snirnov ( 116 I, 
pp. 315-338) and Gantmakher ( 115 I, pp. 83-941. 

Lemma 1.1. Let +(z) be single-valued and analytic in the region G 

(which is, in general, not connected), with r)(G) = G,, aud suppose that 

+(w) is single-valued and analytic in the region G,. Let f(z) = $[+ (z)l; 
f(z) is single-valued and analytic in G. slppose that the spectrum of 

matrix A is contained in G [and therefore the spectrum of B = Q(A) is 

contained in C,l. Then f(A) = {b(B), that is, the two consecutive calcula- 
tions B= +(A) and $/I(B) = +[+(A) 1 yield the same result as the single 
calculation f(A) = +[gS(All . 

Proof. Matrix A and function r$(z> are known 115, 16 1 to give rise to 
a polynomial Q(z) = 2 awzw such that +(A) = 2 a,A". It suffices to de- 

fine Q,(z) by the condition 

0 (hj) = ‘p (Aj), 0’ (Aj) = cp’ (hj), . . .) dn-‘) (Aj) = p-1) (hj) 

where the Xi are the eigenvalues, and n the order, of A; it would be 

enough to use instead of n the maximum dimension of the canonical block 

corresponding to eigenvalue hi. 'lhe analogous polynomial 'P(w) is 

where pi = +(Xj) are the eigenvalues of matrix B. 

We will show that the polynomial F(z) = Y [@ (z) 1 can be used to 

calculate f(A), i.e. F(A) = f(A). We have 

F&l = 'Y [@&)I = y(~j) = (I)= f(hj) 

F’ (hj) = Y’ (pj) @’ (hj) = $’ (pj) q~’ (hj) = f’ (hJ) 
. . . . . . . . . . . . . 
F(“-I) (hj) = f(“-1) (kj) 

llence F(z) and f(z) coincide ( [15 I, p. 84) on the spectrum of A, 

i.e. F(A) = f(A). 

Let Cl be the result of calculating $[$(A) 1 in two steps, 3 the 
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result of the single-step calculation. Then 

B =?(A)= @(A), C,=J,(B)=+(B)=Y[O(A)]=F(A) 

Ch the other hand, 

Lemma 1.2. Suppose 

is analytic in E at E 

5 = f(A) = F(A), i.e. C1 = 5, as was to be proved. 

that the matrix 

Y(&)=YO+EY1+... 

= 0, that.YO = exp ?,, and that matrix A, has no 

distinct eigenvalues congruent (mod 2 pi 1: 

"j -aah# 2xmi (m=f1,f2,...) V-2) 

‘Then the function in Y can be defined in a neighborhood of Y, so that 

(1) In Y(6) is analytic in E at 6 = 0; 

(2) In Y(0) = In eA,= T,. 

Proof. Let ph = %h be the eigenvalues of matrix YO. Define In Y by 

lnY= &-z 1 (cl- Y)-l(InQmh dC (1.3) 

h rt,!! 

Here the rh are circumferences with centers ph and radii small enough 

for the corresponding circles not to intersect qd not to contain the 

point [ = 0, and 

(lnC),,= In 151 fi (argC+ 2@Zh) 

is a single-valued branch of In 5. The numbers mh are chosen to satisfy 

the condition 

(ln ph)mh = ah (1.4) 

'Ihis choice is possible only if there is a one-to-one correspondence 

between the ph and the ah' 'lhis is so here because of (1.2). 

'Ihe definition of In Y given above is the same as that which would 

result from (1.1) for the function 

+(~)=(lnW)m,,, if w6 (rh) 

&ere (r,,) is the circle whose circmference is'rh 

Let f(z) = $HeZ) in a neighborhood of the spectrum of matrix A,. 

It follows f m (1.4) that f(t) E z. By Lemma 1.1, the two-step cal- 

culation Y0 = e Kl , In Y0 = I,!J (Y,) yields the sane result as the one-step 
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calculation In Y, = $ ( e*o ) = f(A o) = A o . 

The fact that In Y(c ) is analytic in c is a direct consequence of 

(1.3). This proves Learna 1.2. 

The following remark may have some interest. ‘Ihere is a matrix A, 

[ for which (1.2) is not satisfied 1 such that 

(1) if Y is any matrix sufficiently near Y, = e*O, there exists a 

matrix A = In Y such that e A= y; 

(2) it is impossible to define In Y in a neighborhood of Y, so that 

In Y, = In eA,= To. and so that In Y is continuous at Y,. 

It is very easy to construct examples to show this*. For instance, let 

A,= 2 2x(_: i) then 

Y”‘:- C ** : (; y, :: J2 

It is known [ 15, 16 ] that the logarithm of an arbitrary matrix suffi- 

ciently near I, can be defined. Let 

Q (t”) = (,” i-1) lO<P<l) 

All the values of lnQ(p) aregivenby[16.] 

Matrix, Q (p ) is 

but matrix In Q(p ) 

+ 2pxi 0 
0 ---_(lnP)o+2q~~ ) 

(P ,q = o,Ik 1, &Z,...) 

arbitrarily near Y, = I, is p is sufficiently near 1, 

cannot be arbitrarily close to matrix A,= In Y,. 

We now suppose that matrix A o is J-skewhennitean. ‘lhen, in addition to 

eigenvalues ah, matrix A, will have eigenvalues ( - ah); and in addition 

to eigenvalues p h = eah, matrix Y, will have eigenvalues phml = e=h. 

By (1.4), eigenvalues p h and p h-1 will correspond one-to-one to numbers 

mh’ 

. In general, the matrices Y. with multiple eigenvalues for multiple- 

valued functions play the role of essential singularities: if Y -) Yo, 

the set of limiting values of f(Y) has the power of the continuum 

( [ 16 1, pp. 332-337). In general, this set consists of a series of 

“surfaces” and a single isolated point. We eliminate the singularity 

by assigning to Y. when it is sufficiently near Yo, a value f(Y) from 

a neighborhood of this point. This value of f(Y) is said to be regular. 

These assertions are needed, of course, in more rigorous formulations 

( [ 16 1 , pp. 332-337). 
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Lemma 1.3. Let us suppose that Y and Y, are J-unitary matrices and 

-I that eigenvalues p h and ph of YO correspond one-to-one with numbers mh 

of (1.3). lhen matrix In Y defined by (1.3) is J-skewhermitean: (In Y)+= 

- In Y. 

Proof. We have 

Here 

contour 

version 

(In Y)’ = - & 2 (Cl -Y+)-’ (LIT;),, dt 
h i;hJ 

rh denotes the contour conjugate to contour rh (the reflection of 

rh about the real axis). In the last integral we perform an in- 
<= [‘I. lhen 

arg E = arg i;, (ln), = 1111 C 1 - i (arg 5 + 2 7~112) = - (ln E)m 

If Iv, is the circumference obtained from rh by the inversion, we get 

(If [ makes 

circuit of rh 

(lnY)+ L --$x \ ([-‘I ---Y-1)-1 (lniirnh dE 

h r;J 

the circuit of rh in the positive direction, [ makes the 

in the negative direction). Since 

E-’ (E-r I - Y-l)-’ = E-l I + (Y - El)-‘, To 

it follows that 

(In Y)’ = i&i 2 \ [E-l I + (Y - EI)-‘1 (In E)mh dE 

h r;5 
The spectrum of Y, is symnetric with respect to the unit circumference; 

hence there is precisely one (perhaps multiple) eigenvalue of Y, in the 

interior of rk, Moreover, [ = 0 is in the exterior of every circumfer- 

ence r”h ; hence 

\ E-l (lnE)mhdE = 0 

cl5 
Consequently 

(In Y)’ = - A.2 i (E 1 - Y)-l (In Qmtz dk (i.5) 

h $5 
‘he right-hand side of (1.5) differs from the right-hand side of (1.3) 

in sign and in the order of the terms. I& since the center of the 

circumference r, is p h-i, and eigenvalues p h and p h1 correspond one-to- 

one with the numbers mh by assuqtion, if we denote by ph, the eigenvalue 

symaetric to ph about the unit circumference: ph# = phel, we see that 

the integrals over the contours r, and I’,, are equal. 
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Hence (In Y)+ = - In Y, g.e.d. 

2. Reduction of the resonant to the non-resonant case. 

Setting et= r in 

We shall prove 

the form 

(0.0, we obtain the equation 

dX 
-- = $ [C + El3 (T, E)] 5 

d7 (2.4) 

that on our assumptions the matrix of system (1.1) has 

X(T,&) = X,(T) + &X,(T) + . . . (24 

where matrices X.(r) are absolutely continuous and, for sufficiently 

small 6 (we consider 0 to be fixed in this case), series (2.2) converges 

uniformly in r, O< r < rc. 

We give a brief sketch of the usual proof. Substituting the formal 

series (2.2) into (2.1), we obtain the following recurrence relations for 

determining the Xj(r ): 

Hence X, = exp (r/6 C) and since Xi(O) = 0, j > 1, 

Xj = 
s 
X~(T-G)[B~X~_~ +. e. + BjXo]ado 

0 

Consequently, all the Xi(r) are absolutely continuous. Let 

Ej = max II xj (T) II (i=O,l,2, . . . . 0<.7<2a) 

Pj = j&J II Bj tT) II dz (i=1,2,...), PO = ~rrcii 

0 

It is easy to see that tj < vi, 

relations 

where vi is defined by the recurrence 

qj =epL(B7Tj-1 + *. . + Pj To)* yio := eA (2.3) 

Introducing the functions 

a(s) =ipjEjv y(E) = i TjSi 

1 1 

we see that (2.3) is equivalent to 

?oS 6) 
T (4 = e--B. _ p (c) 

Hence both series 7 c + q2e2 + v7c9 + . . . and (2.2) converge for 
O<_r (2~ and for alf c, (~1 < cl, where c1 ( c,-, is the least positive 

root of the equation 
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Using a general property of systems with periodic coefficients ( 117 I, 
pp. 179-MO), we see that 

x (T + 2?r,E)G x (T,E) x (2x,e) 

Hence series (2.2) converges uniformly on an arbitrary finite interval 

(0, rO) for 1~1 < cl. Substitution of 

X(T,E) = I + ej,, -t- 

0 

(2.2) into the equation 

~13 ('3, E)] X (u,s)da 

yields an identity. Consequently, the matrix of system (2.1) has form (2.2). 

By Xi we denote the eigenvalues of matrix C, In problems of dynamic 

stability the most interesting case occurs when one of the relations 

is satisfied. 

hj - hh = im6 (a an integer, a+ 0) (2.4) 

In this case parametric resonance* is possible and condition (1.2) of 

Lemna 2.1, which we had intended to apply, is not satisfied. We therefore 

show first how to reduce this case to that when (2.4) does not hold good. 

(0) 
Byp. = exp [2aA./81 denote the roots of equation (0.2) for E = 0. 

Accord&g to (2.4), theie will be multiple roots p . 
(0) = phto) for E = 0. 

Eigenvalues A. are partitioned into residue classed of eigenvalues (mod 

i0). Eigenva ues A. , i . . . . A. of a single residue class correspond one- 

to-one to the root.s'Af the chifacteristic equation for c = 0: 

2x hj, 
p(O) = exp e = 

[ I [ 1 
2X hj, 

. ..= exp B 

Let a0 = ( O/237 )ln p(O), where the value of the logarithm is arbi- 

traty. In other uords, a,, is sn arbitrary number congruent (mod i6) with 
” 

the numbers of the given class. We 

hjl = a0 + im, 8 

We define matrix Co on the null 

value X 
is by 

have 

(m,-an integer) 

subspace' Ljs corresponding 

(2.5) 

to eigen- 

l For this to happen, the eigenvalues h. must, in addition, be pure 
imaginary. Here we do not make this aisumption. 

’ We recall that the null subspace L corresponding to the eigenvalue h 

is the subspace of vectors f for which there exists an integer I such 
that (C - h 1)‘f = 0. 
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Co1 = im,f, fcLj8 (2.6) 

Ihen matrix C, is a multiple of the identity matrix on each of the 

null subspaces of matrix C; hence 

Let us put 
cOc= cc0 

K,=$C-CC, 

0n the invariant subspace LjS matrix K, has the eigenvalue 

(2.7) 

(2.8) 

belong to a single eigen- Jience eigenvalues A. , . . . . A. of matrix C: 

value so/O of matrix K;; i the mu Eiplicity of this eigenvalue is equal to 

the sum of the multiplicities of eigenvalues hii, . . . . XjS. In (2.1) we 

make the change of variable 

r = @cay 

and obtain the system 

dy 
- = [K, + sD (~,~)ly 
d,r i 

D(T, E) = $ e-TcaB(T, ~)e~% ) (2.9) 

using relation (2.7). 

System (2.9), unlike system (2.1), has the pro erty that the class of 

eigenvalues of matrix K, corresponding to one p COP consists of coincident 

eigenvalues. 

It follows from (2.6) that 

&0(7-W)= ec.7 

on every suhspace Ljs and hence on the whole space. 

lherefore D (r., E) is periodic in r, of period 2~) and analytic in c 

at 6 = 0 in the szmne sense that B (r, 6) is, i.e. 

E D(T, s) = ED,(T) + E2 D,(T) + . . . . 

where 
m 

C IIDj(T)IIdr<*j (2.10) 

0" 

and the series 66, + e2a2 + . . . converges for (E( < co. 

Theorem 2.1. For a suitable choice of a0 in (2.3): 

(a) if system (2.1) is a canonical system (in general, with complex 
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coefficients) with 

c+= -cc, B(T, E)+ = - B(T,E) 

then system (2.9) is also a canonical system with 

K,+ = -KO, D(T, E)+ = - D(T, E) 

(b) if system (2.1) has real coefficients and 

e#t_(2/7?2) IIIlhj b= 1, 3, 5,. . .) 

then system (2.9) also has real coefficients; 

(c) if (2.1) is a canonical system with real coefficients and 

O#i-(Z/m)Imhj (m= 1, 3, 5,...) 

then (2.9) is also a canonical system with real coefficients. 

(2.11) 

(2.12) 

Proof. (a) We will prove that CO' = - CO if C+= - C. According to 

(2.61, if f and g are vectors of the sane null subspace LiS, then 

<Gf, g>= im,<f, g> = -<<f. Gg> (2.13) 

We consider two null subspaces L. and Lh with eigenvalues A. and 

A,, = - xj # hj. It is easy to verity that eigenvalues A. and hi cannot 

belong to the sane residue class. If A. E a0 (mod ;O ),'then A, = - a,, 

(mod i0 1. Let us agree to choose for ihe number a0 of (2.5) the numbers 

a0 and- a0 in the classes(Xjl aIid{Xh].%en eigenvaluesX. and Ah= 
- Xj will correspond to a single number llzI according to (2.5j. This 

verifies (2.13) once more. 

We now suppose that A, f - 

is J-orthogonal ( 113 I, Ch. 
A. and A, f Ai. 'lhe corresponding subspace 

XI! Therefore, 

<COf, g> = 0, <f, CO g>=o for fGLh* gCLj 

i.e., again 

<COf, B) = -<<f, Cog> (2.14) 

Hence (2.14) is satisfied for any two vectors f and g of an arbitrary 

null subspace of matrix C and therefore for two arbitrary vectors. Hence 

co+=+). 

Then (eCot)+= eCc+t = e-'Cot, i e matrix eCot is J-unitary and 

(2.121 follows from (2.8) and (2.9): * 

(b) It is enough to prove that matrix C, is real for a suitable choice 

of ao. We note first that if 

cot= Gf (2.15) 
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is satisfied for an arbitrary vector f, then matrix is real. (Here f 
denotes the vector with complex conjugate Indeed, in (2.15) 
take f = ej, i.e. the column vector all of whose components, except the 
jth, are equal to zero, and whose jth component is 1. Vector C e. is the 
jth column of the matrix C,,. By (2.151, we have $ej = Gej = &ii, i.e. 
the components of Gej are real. Gnsequently, matrix Co is real. 

Since matrix C is real, the null subspaces Lx and Lx are complex COR- 
jugates for a nonreal eigenvalue A: if f ELA, then fl2L.A and conversely. 
If by L we denote the subspace consisting of the vectors conjugate to 
those of L, this may be written as LA = Lx. 

First, suppose that eigenvalues Xi and Xi belong to the same class and 
that Im Xi f, 0, Then 

hj - Kj = mi0, 
21mXj 

%=_ 
m 

Because of our assumptions, the number I is even. Since 

hj = Rehj +"/2 im8, 

A.= Reh. (mod ie). Hence we may takea 

9 

= 13etlj in (2.5). If A. is in 

t 1: e givenJclass, 'then A. = a,, - int,b) by 2.51, i.e. Xj, also be&s to 
this class and its corri&onding number is ms = --I~. 

Suppose that f LA_ . ‘hen f 
of matrix G we have JS 

Lx 
j, 

and according to definition (2.6) 

C,f = imsf = -im,f =CJj-f (2.16} 
- 

Hence (2.15) is satisfied for vectors belonging to subspaces of the 
type indicated above. 

If A. is a real eigenvalue, set a0 = 
is real: L = L (i.e. L 

hi. The corresponding null space 

the corrple?conj$atel. 
.=o 

is invariant under the operation of taking 
Since the corresponding number ms = 0, then 

$f= 0, C,,f = 0 .for vectors f Lao, f La,, i.e. (2.15) is again satisfied. 

'Ihe only case left to consider is when Xi and hi belong to different 
classes. Then the classes containing Xi and hi consist of complex conju- 
gate eigenvalues. If the complex conjugates a0 and a0 are chosen as the 
representatives of the classes, eigenvalues A. and&. correspond to the 

numbers ms and ms = - mS. Hence (2.16) is satkfied fG vectors f Lja 

and f Lhjs. 

We have shown that (2.15) holds for the f vectors of an arbitrary null 
subspace of matrix C. Since the whole space is the direct sum of null 
subspaces, (2.15) is satisfied for an arbitrary vector, i.e. $ is a real 
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matrix. 

(c) We must show that it is possible to choose the numbers a0 so that 
a) and b) are satisfied simultaneously. For this it is necessary that: 

(1) a0 and - a0 be chosen as the representatives of classes ( Xi ] and 

I-Aj~f lhjl ; 

(2) the complex conjugates a0 and a,, be chosen as the representatives 

of classes 1 Xi I and I hi ] f ( hi ) ; 

(3) if JAj 1 = (A 1 , then a0 = aO. 

It is easy to see that if this is done the set of numbers a0 will be 

symnetric with respect to the real and imaginary axes. 

Since C+ = - C and C is a real matrix, the spectrum of C is symnetric 

relative to the real and imaginary axes. Consequently, classes ( Ai 1 , 

JAjl,andl-Ai1 are identical. It is therefore possible, for classes 

with .Re Xi >, 0, to choose numbers a0 satisfying (2) and (3). In classes 

with k A. < 0 we choose the numbers a0 so that they are symaetric relative 

to the im:ginary axis with the numbers a,,, Re a0 > 0. 

Jience the set of numbers a0 satisfies (l), (2), and (3). 

Note. It is easy to see from the proof of (b) that CO is a real matrix 

if 8 = n’-l Im Ai, m = + 1, +_ 3. + 5, . . . . Hence (2.9) will be a system 

with real coefficients if in the corresponding classes the numbers a0 are 

chosen as real, and the numbers I as multiples of H. But then matrix 

D(r, E ) will have a period of 4n.SIf r is replaced by 2nl : r = 2nl, the 

resulting system will have period 2n and will be of the same form. 

‘Ihe following theorem is a more precise version for our case of the 

theorem of Liapunov-Floquet on the reduction of a system with periodic 

coefficients. 

Theorem 2.2. Let us assume that a system (2.9) is given, with matrix 

D(r ) c 1 analytic in E at c = 0 in the sense indicated abve and with 

periodic coefficients of period 2s. We further assume that matrix K, 

does not have distinct eigenvalues congruent (mod i). 

We represent matrix Y(r) c ) of system (2.9) in the form (2.17) 

where Y (7, s) := P (T, E) eK cE) + 

P (T, E) = 1 + E P, (T) + E2 P, (T) + . . . 

K(E)=-K~+EK~+E~K~+... 

(2.17) 

(2.18) 

(2.19) 
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are analytic in c at E = 0, P .( r ) is an absolutely continuous periodic 
matrix, with period 2n, and siries (2.R) is dominated by a series with 
constant coefficients. If (2.9) is a canonical system: 

then 
K,+ = - K,, D (T, E)+ = - D (5, E), 

P (T, E)+ P (5, E) = I, K (E)’ = - K (E) (2.20) 
-. 

The proof is a repetition, using the lemmas of Section 1, of the usual 
proof of the Liapunov reduction theorem [ 3 a, 17 1 . It is easy to verify 
that matrix Y(r ) = Y(2n, c ) satisfies the hypotheses of Lemna 1.2; here 
A,= IRKS .llence we may define K(c) = (2~ )-I In Y(2~7, C)SO that K(c) 
will be analytic in c at c = 0 and K(0) = K,. ‘Ihen matrix 

P (7, s) = Y (7, E) e-K CC) 5 

will be analytic in c at c = 0, with coefficients P.(r ) 
lutely continuous functions of r. It is easily veri ied + 
P(r , E 1, i.e. P.(r + 2~) = P.(r ). Since the series for 
e - K(’ Jr for 0 2 r < 2n are knninated by a series with 

cients, the same is true for series (2.18). 

(2.21) 

which are abso- 
that P(r + 2~ ,E)E 
Y(r , E) and 
constant coeffi- 

If (2.9) is a canonical system, Y(r) 6 1 is J-unitary. It follows from 
Lemna 1.3, with Y = Y(2r, 6 ), Y, = Y(2rr, O), that K(r )+= - Kk ). Since 
(2.21) implies that P(r , 6 ) + P(r , t ) P I, the theorem follows. 

3. Computation of the coefficients of the expansions (2.18) 
and (2.19). On differentiating (2.17) with respect to r, we see that 
P(r , f ) satisfies equation 

g= [K 0 $ ED (T, E)] P - PK, (3.1) 

Substituting series (2. lg), (2. lo), and (2.20) into (3.1), we obtain 

dP* 
-z- 

= K,P, - P,K, + (DIP,_1 + . . . + D,_, P,) - (P,+ K, + . . . + 

+ P,K,-,)-Kn (3.2) 

Regarding matrices P - I, P,, 
have equations of the f&-m 

P **a, “_I’ K,, . . ., Kn_ 1 as known, we 

dZ -=KaZ-ZK,+F@)-L 
d7 

(3.3) 

for determining P”, K,,. 

Here Z = Ps, L=K and r + 2n ) = F(r ) almost everywhere. lhe solu- 
tion Z(r ) is a period?cax: Z(r + 21~ ) =, Z(r 1. Moreover, P,(O) = 0 
for n > 1; hence 
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Z(k) -z % (0) = 0 ;::.‘tj 

Lemma 3.1. Let us suppose that matrix K, in (3.3) (where the unknowns 

are z(r I and the constant matrix L) does not have distinct eigenvalues 

congruent (mod i ), i. e. 

Aj - hh -f mi, m == -j-l, -1-2,. . . and F (2) C I; (0, 24 

Then the solution ( Z(r ), L 1 , f or 

Z(2n 1 = Z(O), 

an arbitrarily given matrix Z, = 

exists and is unique, and 

'he constants yl, y2, y7, yU depend only on matrix K,. Matrix Z, may 
always be chosen so that 

Then 

L = & “j F (7) dt = F,r, 
0 

where y. depends only on K,. 

PFOOf. Treating the matrices as vectors in n*-dimensional space, we 

write (3.3) in the form 

g=AZ+F(r)-L (3.7) 

where A is the commutator operator: AZ = K,Z - ZK,. 

It is known [ 15 1 that the numbers A. - A,,, j, h = 1, . . . , R, are the 
n2 eigenvalues of operator A. At least’n of them (when j = h) are equal 

to zero. Denote by II’ the null subspace of operator A, corresponding to 

the zero eigenvalues, and let ll” be the direct sum of the null subspaces 
corresponding to the nonzero eigenvalues. 

Let A’ and A” be the operators induced by A in the invariant 
l-r and fI” respectively. An arbitrary matrix A can be written as 

A = A’ + A@, A’6rr’, A” C II” 

subspaces 
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Equation (3.1) is split into two equations 

dZ’ _ = A’Z’ + )j’i(s)’ - L’. 
d7 

z= A”Z’ + F (7)” - L” 

The condition Z(2n ) = Z(0) is equivalent to the conditions 

z’ (24 = Z’ (O), ZW(27c) = Z”(0) 

‘lhe solution of the second equation of (3.8) is 

z” (T) = e *“T ]Z” (0) + i e-A”” [F (c)“-L”] da] 
0 

Hence the second equality of (3.9) is equivalent to 

(e-2~h” _ I) Z” (0) = ‘[ e-h” OF (s)“&-(A”)-’ (e--h”2~ _ I) L” 

0 

Recalling the definition of operator A”.we see that the numbers 

exp [- 2s (A. - A,) ] - 1, for those values of j, h for which hi - 

are the eigeAvalues of operator e -2 UK._ 1, 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

Qih = 
x, f ‘8 

Because of the assumption that xi - hh f 2 mi, m = 1, 2, . . . , it 

follows that a jh # 0. ‘lherefore, the matrix L’t.can be uniquely defined 

for an arbitrary matrix Z”.(O), and conversely. In particular, we may 

take L”= Fen. Equations (3.10) and (3.11) yield the estimate 

max il Z” (4 /J < rl” I[ Z” (0) I! + Q” T 11 F (4” - L I) da 
oe<2x 0 

where y j’c-depends only on matrix K,. 

2x 
c 

1 I z” (0) II < 7”s ,I II F (4” (I do 

(3.12) 

also get 

‘Ihe first equation of (3.8) is split into as many equations as there 

are blocks in the Jordan canonical form of the matrix of A’, In scalar 

notation every such equation will be a system of the form 

G=‘p- 4% 
d,r 1 x1* d-c 

- = Cl + y2--x2,. . . ) g = L-1 + ‘Pr --Xl (3.13) 

From these equations, we can find L,(r ), . . . . c,(r) if L,(O), . ..) 

c,(O) are given. For these functions to be periodic of period 2~ it is 

necessary for the mean values of the right-hand sides to be zero. Hence 
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the solution [,(r ), . . . , [,(r 1, K~, . . . . 
prescribed [,(O), . . . . [,(O). 

tcl is uniquely determined for 

We may take K% = @51)c 

the mean value of the rig t-hand side of the second equation is zero. -K 

, . . . . “t = (+&t and choose C,(O) so that 

C&(O), ***, cl_,(0) are similarly defined, while the value of c,(O) is 

left arbitrary. Hence Z,’ 

that l,(O), 

can be chosen so that L’. = F’,,. We will assume 

. . . , c,(O) are prescribed. It is then easy to see from (3.13) 

that the numbers ~~ can be estimated by a linear form with positive 

coefficients in the quantities 

iUO)/V. ik-,(o)lt 

i.e. that the estimate 

/IL II -S ys’ II Z (0)’ II + ~4’ I 1 F (0)’ II do 

analogous to the second estimate of (3.12). holds good. Ihe equation and 
estimate analogous to (3.10) and the first estimate of (3.12) follow from 

the first equation of (3.8). lhey are obtained by replacing primes with 

double primes in the above. 

Putting all this together, we get all the assertions of the Lemma, 

except for estimate (3.6). For L = Fcp, the preceding argument yields 

0 

This, together with (3.5), irqlies (3.6). Ihis proves the La. 

A practical solution ( Z(r ), Ll is conveniently defined as follows. Let 

(The series on the right is, in general, divergent, since l% ) is only 
Lebesgue integrable.) According to the above, there exists an absolutely 
continuous matrix function Z(r ) which is a solution of (3.3). let 

Z (T) = 2 Z(m) eimr 
m. 

(3.14) 

(The series converges, since Z(r ) is absolutely continuous. ) 

Substituting these series into (3.3), we obtain 

(3.15) 
in2 Z(m) = KOZ(m) - Z(m) K, + li’t”) (m # O), K,Z@‘) - Z(o)K, + F(O) - L = 0 
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because of the uniqueness of the Fourier expansion 

Matrices Z("'), m f P, are (uniquely) defined by 

(3.15). If matrix Z(O) is prescribed, we use it to 

Z(O) L z (0) - rm 

of a sumnable function. 

the first equation of 

find 

and after that matrix L by means of the second equation of (3.15). Here 

and subsequently the prime on Z means that the sumnation is taken over 

all m f 0. If we take Z(O) = X',,, then Z(O) = 0 and L= F(O) = Fen. 

Remark. This reasoning is almost enough to prove Theorem 3.1. but we 

have here used the existence of solution Z(r) and the convergence of 

series (3.14). The convergence of series (3.14) and the absolute con- 

tinuity of Z(r) can evidently be deduced from (3.15). (All we know about 

the F(a) is that they are the Fourier coefficients of a summable matrix 

function.) This way, however, is hardly shorter. 

Hence matrices K,, P, (r ), 3, P, (T ) etc. can be found consecutively 

by using (3.2). 

'Ihe condition P(r, c) E I implies that P.(O) = 0, j = 1, 2, . . . . 
lberefore, Z(0) = Xa= 0 in (3.31, and if A want to use (3.15) we must 

first determine matrices Z("), I f 0 and then matrices Z(O) = - rll and L 

However, it is more convenient to proceed differently. Let U(r, 6 I be 
the matrix of a fundamental system of solutions of (2.9) such that 

U(0,&)=V(E)=I+EV1+E2Vg+... 

is analytic in t at C = 0. 

Then V(c 1 -I will also be analytic in a neighborhood of t = 0 and 

u (7, E) = Y(7, ~)V(E) = P(l)(7, E)exp [K(i) (E)T.] 
where 

P(i) (7, E) = P(T, E) V(E), K(~)(E) = V(z)-1 K (E) V(e) 

Matrices P = P(l)(r, 0 and K= K(~)(C) satisfy (3.11, with K(')(O) = 

K(0) = K, c Setting 

K(~)(E)= K,+&Ki + ._. 

P(i)(T, E) = PO(T) + EPr (7) + GP,(T) + . . . 

we again obtain an equation of the form (3.2) for matrices P,, K,. NOW, 
however, P,(O) f 0 in general. Moreover, any finite runnber of matrices 

P,(O) = V, can be chosen arbitrarily; in general, the convergence of the 
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series 

PCl)(O, E)=V(E)==I +EV~+EaV,-+-... 

is sufficient. 

It is convenient first to choose V, = Pn(0) so that 

K,=(D,P,_,+...+D,_,P,-P,K,--...-P,K,,),, 

in (3.2). 

According to Lemna 1.3 this can always be done. However, it must be 

borne in mind that through this choice of matrices K, we do not obtain 

matrix KG ) of (2.171, with Y(0, t ) E I, but a matrix similar to it. 

Finally, in order not to complicate matters, we assume that 

Bj (T) C Lz (0, 24 

in (0.2). 

Then 

Rj (T), Dj (7) 6 L (0, 2~), Dj (~16 Lz (0, 27~) 

If 

[A (t) B (T)],~ = 6 A_.+,&, = 2Re i A,B, 
m m-o 

Here the series converges absolutely. Using this formula and (3.15), 
with Zf”) = Z 4 0, L= F(O) = F 

formulas for Zlculating matrices 

it is easy to obtain c~utational 

%;’ l$t Kj, P,, P** 

In system (2.9) w represent D(r) c 1 by series (2.10) and 

Dj (T) - i Dj(m)eimr 
m=--CO 

By W = K,(G) we denote the solution of equation (3.16) 

Then 

imW=K,W-WK,+G (3.16) 

K, = [D, (‘)lcp = D,(o), P, (T) = 2 Km (D1cm)) eim+, K,= 2 D~-“k,,,(D,‘m’) 
me0 m+o 

F(m) = 2 [D1(‘)Kk (Dl’“‘)] - Km (D1’“‘) K1 + Dim) 
k+l=m 
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l-‘, (9) - 1 2 K,, . (F(m)) eimr 
7ll#O 

K, = 2 [D;-“‘K,,, (F”“‘) + D;-“‘K, (D,‘“‘)] + D3(“’ (3.1 i) 
,=I 0 

If D(T, t ) is a real matrix function, then 

K, = 21:~ 2 l,,‘““‘K,, (D,fl”) + D,(O) 
m=1 

It would be easy to write formulas for Kn and P,(T ); we do not do so 

because they are very unwieldy. We will call the expression 

Y’(n) (T, E) =.: (I + sl’, (T, _1- . . . -I- inl’n (T)) cxp [ (I${- . . . + $K,,) T.] 

the approximate solution of nth order of (2.9). 

This approximate solution has obvious advantages for the study of the 

behavior of matrix Y(T) E ) as T + m in comparison with the approximate 

solution 

Y (T, a) z eKo7 -;m EYI (T) -;m . . . _1- E.Y,, (T) 

where the right-hand side is a partial sum of the series expansion of 

Y(T , c 1 in powers of 6. 

Let us consider the case of a canonical system in more detail. 

We assume that A, = i o0 is pure imaginary and an m-fold eigenvalue of 

matrix K 0. Matrix K(c ) has m eigenvalues of the form 

hj(E)__iD)“-~CLjEp4/qi ~1 lj3E 
P,i-J/O] 

+... (3.18) 

If&a.> 0 for some j, 

c > 0, andlsystem (0.1) 

then Re h k ) > 0 for all sufficiently small 

is unstable fLr sufficiently small E > 0. 

If all Re aj < 0 (for j = 1, . . . , m and for all eigenvalues i o0 ), 

then all Re Xi (c ) < 0 for t f 0, ((1 < co. In this case system (0.1) is 

asymptotically stable for sufficiently small t. ‘Ihis case, however, can- 

not occur for canonical systems since such systems cannot be asymptotic- 

ally stable. 

If all Re a < 0 and there are a. such that Re a. = 0, then it is 

necessary to d&ermine coefficientsl/?. correspondin; to these latter 

values of j (there will be analogous deductions about stability), etc. 
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In a stable canonical system all the coefficients ai, pi, etc. will 

prove to be pure imaginary. 

Theorenr 3.1. Suppose that (0.1) is a canonical system and that in the 

consecutive calculation of coefficients aj, fij of expansion (3.18) all 

these coefficients prove pure imaginary and, at some stage, distinct; so 

that, if Xi'(~) is a partial sum of (3.18), then 

llC)*j' (E) I= 0, )\j'(E) =+= h,,' (E) (i, h = 1, . . . , 111; j$h) 

for o<c <co. 

Then 

1tc Aj (E) :-- 0, )‘j (2) #&, (c)5 (i, fr :- I . . , ,a; j+-h) 

for all sufficiently small c > 0. 

Proof. Let hj ” (6) = Xi(C) - Xj’.b 1. k c -a 0, 

1 hi” (E) / = 0 ( 1 hi’ f&) - b’ (E) 1) (i-f:h) (3.19) 

Surround the point iw, with a circle whose interior contains no other 

eigenvalues of matrix K,. For sufficiently small c this circle will con- 

tain only m eigenvalues (3.18). Matrix K(r) will be J-skewhermitean 

(Theorem 2.2) and its spectrum will be synmaetric with respect to the 

imaginary axis. 'Iherefore, if the conclusion of the theorem is not satis- 

fied, there are at least two eigenvalues for which 

Imhj (s) = Imhh (s) 

for all sufficiently small E. 

Hence 

Im [Aj'(&) - Ah'(E)] = - IIil [hi” (E) - hh” (E) ] 

and since Re Xj'&) = l?e A,'(t 1 = 0 by assumption, it follows that 

1 hj’ (E) - hi’ (E) 1 = 1 Im [hj’ (E) - b (E)] < I$” (E) 1 -f f hh)l (E) / 

This contradicts (3.19) and proves the theorem. 

We will refer to the case in which matrix K(C) has pure imaginary 

eigenvalues, some of which are multiple, for all sufficiently small (c, 

as the singular case. To calculate a finite number of the coefficients 

a., /3. of expansion (3.'18), 

m&rices K,, K,, K,, . . . . 
we need to know only a finite number of 

Therefore, in the nonsingular case the deter- 

mination of only a finite number of matrices K,, K,, K2, . . . is required 

to show whether a canonical system (0.1) is stable or unstable. 

In practice it is not necessary to determine the coefficients of 
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expansion (3.18). It is more convenient to proceed as foilows. 

As we have seen, in the case of a canonical system with real coeffi- 

cients we can consider matrix K(r ) to be real and J-skewhermitean. ‘Ihe 

characteristic equation 

&I. [K (8) --- ).I/ 0 (3.20) 

will therefore have real coefficients and contain only even powers of X, 

i.e. it will be of the form* 

I,,” -1. %‘!,,“-l .;- . . . ./- %,< --: I) (3.21) 

where p = h2, 2 k = n. Coefficients x. are functions of the parameters of 

the system, and in particular of t dd 8. Further, the yj are analytic 

functions of 6 and l/8. All solutions of (0.1) will be bounded as t + 00 

(stability) if equation (3.20) has real negative roots pj. If some of the 

roots p. are complex or real and positive, then (0.1) has solutions un- 

bounded’in t (instability). 

Hence the problem of obtaining conditions for the stability (instabil- 

ity) of a canonical system (0.1) is reduced to: (1) the calculation, to 

prescribed accuracy, of matrix K(r ); (2) the construction of the regions 

of aperiodic stability for equation (3.21). 

The conditions for aperiodic stability (i.e. the conditions that equa- 

tion (3.21) have real negative roots) are well-known (for instance, see 

I 19 1 ) pp. 214-226). 

In this connection, it is further necessary to investigate the set 
(usually a line) on which 8 = 0, where 6 is the discriminant of (3.21). 

While 6 = 0 on the boundaries of the regions of dynamic instability, it 

is also true that the line 6 = 0 can lie in the regions of stability; in 

that case the system is stable if matrix K(r 1 has canonical blocks and 

unstable if it does not. 

4. Example. Let us consider equation ( ES 1, P. 311)** 

(4.1) 

* The spectrum of a real J-skewhermitean matrix is symmetric relative 
to the real and imaginary axes, and is therefore symmetric relative 

to the origin. Hence the charaxzteristic equation does not change when 

x is replaced by - h and so contains only even powers of A. 

** We note, referring to [ 9 1, that many problems of the dynamic stabil- 

ity of plates and plane forms of bending reduce to this equation. 
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where 

' l/o,2 
c2 = ( cl y ), po= a,+ &cos01 

%' 
PO are small parameters and 0 < o1 < oz. Multiplication by Czml yields 

the equation 

d2f 
&Efll” ‘2-+Nlf -0 (4.2) 

where 

I’,=( “0’ it)* 
IO 1 

N=\, 1 0 ‘p m= a + p cos Ot 

a = a$, P = !%A 

Introducing the notation 

x1 = P’o/tf, 
df 

22 = pp& ) 
Xl 

I = 

( ) x2 ' 
'91= --xEzzT 

v- 9 OlW2 

c=(-jo 'a )* 

we obtain the system 

;; = [C + B (et)] x (4.3) 

It is easy to verify that matrices JC and JB(6t). where J = 

are symmetric, i.e. that system (4.3) is canonical. 

The author has shown [14b] that for equation (4.2) only the regions 

corresponding to the “combined” frequency 8, = o1 + o2 are “broad” 

regions of dynamic instability (the tangents to the boundaries at the 

point (0, 8,) do not coincide), while all other regions are “narrow” (the 

tangents to the boundaries of the region at a point on the o-axis 

coincide). 

We here consider, therefore, the problem of “integrating” equation 

(4.2) for values of 8 near 8, = rij + a2 and determi’ning the corresponding 

region of dynamic instability. Setting 

‘c = 0t, 
eo - 0 

Y = 0,e 
we obtain the equation 

g=[$C +(YC + $B(+ (4.4) 

We think of matrix yC + (l/&B(r ) as a “perturbation”; we could have 

prefixed it in equation (4.4) with a small parameter 6 and then set 6 = 1 

in the final formulas. This corresponds to the fact that the final formulas 

are true for small a, t3, y. 
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Omitting the calculations, we write the final result* 

K, zz ; 
0 M B 

- \I- 0 ’ K1=yC+26V,,,, 

0 
K2 = 

Vl (I - w\ 
Ye (I + M) -vi (31 + M) 0 / 

where 

1 a2 ‘2 $ 
‘1 = 46’6,~~ I- 201/6, + 16 (I- w#J,) I 

1 a2 B” 
v2 = 26*oloz I - 201 / e. + 8 (I- a1 / 0,) I 

The characteristic equation Det (K - x I) = 0, up to quantities of the 

second order (K = Kg + Ki + KZ), has the form 

P” + XlP + y.2 = 0, rge p=h2 

XI = $ - 1 + zvJ + : (7 - 2v* + 4v1; 

a1 

x2= 5 [I( j- - 2va + 4Vl 

07, 

)( j- - 1 

2 

+ 2vr > -4& ( w;3--1+2vl >I 12 6 

* The calculation of matrix K2 is the most laborious. This computation 

and the determination of the last term in (4.5) was carried out by 

V.S. Grenkov under the direction of the author, who takes this oppor- 

tunity to thank V.S. Grenkov for his work. The details of this calcula- 

tion, as well as the determination of the regions of dynamic instabil- 

ity for the principal resonance 6, = 2oi/m, 8, = 202/a will be 

published in Inzhenernyi Sbornik. We note that the calculation of the 

principal resonance is much simpler, since the fact that equation (4.4) 

has a solution x(r) satisfying the relation x(r + 2s ) can be used. 

Along the boundaries of the regions of dynamic instability correspond- 

ing to the principal resonance, the roots of the characteristic equa- 

tion (0.2) are fixed; along the boundaries of the regions of dynamic 

instability corresponding to the combined resonance 

6, = Cwj + ohJIm, oj~aht m = 1,2, . . . , 

these roots, as multiple roots. are displaced (in an unknown way) on 

the unit circumference. This makes the problem of determining the 

boundaries of dynamic instability of the combined resonance more 

complicated than that of the principal resonance. 

The relation x(r + 2~ ) = (- l)“x(r) has been used to construct the 

regions of the principal resonance by the method of harmanic equi- 

librium in [G 1, 57 ff. 
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The boundaries of the domain of dynamic instability are determined 
from the equation 6 s l/4 xi2 - xz= 0, and the domain of dynamic in- 
stability by the inequality 6 < 0. 

From the equation 6 = 0, for the boundaries of the domain of dynamic 
stability of the “combined” resonance 8 = y + 02, we obtain the formula 

Instability occurs for o_ < 8 < 0+. 
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